Великие ученые. Блез Паскаль

В 1640 г. попытку создать механическую вычислительную машину предпринял Блез Паскаль (1623-1662).

Существует мнение, что «на идею счетной машины Блеза Паскаля натолкнуло, по всей вероятности, учение Декарта, который утверждал, что мозгу животных, в том числе и человека, присущ автоматизм, поэтому ряд умственных процессов ничем по существу своему не отличается от механических». Косвенным подтверждением этого мнения служит то, что Паскаль поставил перед собой цель создать такую машину. В 18 лет он начинает работать над созданием машины, с помощью которой даже незнакомый с правилами арифметики мог производить различные действия.

Первая работающая модель машины была готова уже в 1642 году. Паскаля она не удовлетворила, и он сразу же начал конструировать новую модель. «Я не экономил,- писал он впоследствии, обращаясь к «другу-читателю»,- ни времени, ни труда, ни средств, чтобы довести ее до состояния быть тебе полезной... Я имел терпение сделать до 50 различных моделей: одни деревянные, другие из слоновой кости, из эбенового дерева, из меди...»

Паскаль экспериментировал не только с материалом, но и с формой деталей машины: модели были сделаны - «одни из прямых стержней или пластинок, другие из кривых, иные с помощью цепей; одни с концентрическими зубчатыми колесами, другие с эксцентриками; одни - движущиеся по прямой линии, другие- круговым образом; одни в форме конусов, другие - в форме цилиндров...»

Наконец в 1645 году арифметическая машина, как назвал ее Паскаль, или Паскалево колесо, как называли ее те, кто был знаком с изобретением молодого ученого, была готова.

Она представляла собой легкий латунный ящичек размером 350X25X75 мм (Рисунок 11.7). На верхней крышке - 8 круглых отверстий, вокруг каждого нанесена круговая шкала.

Рисунок 11.7 - Машина Паскаля со снятой крышкой

Шкала крайнего правого отверстия разделена на 12 равных частей, шкала соседнего с ним отверстия - на 20 частей, шкалы остальных 6 отверстий имеют десятичное деление. Такая градуировка соответствует делению ливра-основной денежной единицы того времени - на более мелкие: 1 су = 1/20 ливра и 1 денье - 1/12 су.

В отверстиях видны зубчатые колеса, находящиеся ниже плоскости верхней крышки. Число зубьев каждого колеса равно числу делений шкалы соответствующего отверстия (например, у крайнего правого колеса 12 зубьев). Каждое колесо может вращаться независимо от другого на собственной оси. Поворот колеса осуществляется от руки с помощью ведущего штифта, который вставляется между двумя смежными зубьями. Штифт поворачивает колесо до тех пор, пока не наталкивается на неподвижный упор, закрепленный в нижней части крышки и выступающий внутрь отверстия левее цифры 1 круговой шкалы. Если, например, вставить штифт между зубьями, расположенными против цифр 3 и 4, и повернуть колесо до упора, то оно повернется на 3/10 полного поворота.

Поворот колеса передается посредством внутреннего механизма машины цилиндрическому барабану, ось которого расположена горизонтально. На боковой поверхности барабана нанесены два ряда цифр; цифры нижнего ряда расположены в порядке возрастания- 0, ..., 9, цифры верхнего ряда - в порядке убывания-9, 8, ..., 1,0. Они видны в прямоугольных окнах крышки. Планка, которая помещается на крышке машины, может передвигаться вверх или вниз вдоль окон, открывая либо верхний, либо нижний ряд чисел в зависимости от того, какое математическое действие нужно произвести.

В отличие от известных счетных инструментов типа абака в арифметической машине вместо предметного представления чисел использовалось их представление в виде углового положения оси (вала) или колеса, которое несет эта ось. Для выполнения арифметических операций Паскаль заменил поступательное перемещение камешков, жетонов и т. д. в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствует сложение пропорциональных им углов.

Колесо, с помощью которого осуществляется ввод чисел (так называемое установочное колесо), в принципе не обязательно должно быть зубчатым - этим колесом может быть, например, плоский диск, по периферии которого через 36° просверлены отверстия, в которые вставляется ведущий штифт.

Нам осталось познакомиться с тем, как Паскаль решил самый, пожалуй, трудный вопрос,- о механизме переноса десятков. Наличие такого механизма, позволяющего вычислителю не тратить внимания на запоминание переноса из младшего разряда в старший,- это наиболее разительное отличие машины Паскаля от известных счетных инструментов.

На Рисунок 11.8 изображены элементы машины, относящиеся к одному разряду: установочное колесо N, цифровой барабан I, счетчик, состоящий из 4 корончатых колес В, одного зубчатого колеса К и механизма передачи десятков. Заметим, что колеса В1 В4 и К не имеют принципиального значения для работы машины и используются лишь для передачи движения установочного колеса N цифровому барабану I. Зато колеса В2 и В3 - неотъемлемые элементы счетчика и в соответствии со «счетно-машинной» терминологией именуются счетными колесами. На

показаны счетные колеса двух соседних разрядов, жестко насаженные на оси А 1 и A 2 , и механизм передачи десятков, который Паскаль назвал «перевязь» (sautoir). Этот механизм имеет следующее устройство.

Рисунок 11.8 - Элементы машины Паскаля, относящиеся к одному разряду числа

Рисунок 11.9 - Механизм передачи десятков в машине Паскаля

На счетном колесе В 1 младшего разряда имеются стержни d, которые при вращении оси A 1 входят в зацепление с зубьями вилки М, расположенной на конце двухколенного рычага D 1 . Этот рычаг свободно вращается на оси А 2 старшего разряда, вилка же несет на себе подпружиненную собачку. Когда при вращении оси А 1 колесо В 1 достигнет позиции, соответствующей цифре б, стержни С1 войдут в зацепление с зубьями вилки, а в тот момент, когда оно перейдет от 9 к 0, вилка выскользнет из зацепления и под действием собственного веса упадет вниз, увлекая за собой собачку. Собачка и протолкнет счетное колесо В 2 старшего разряда на один шаг вперед (то есть повернет его вместе с осью A 2 на 36°). Рычаг Н, оканчивающийся зубом в виде топорика, играет роль защелки, препятствующей вращению колеса В 1 в обратную сторону при поднимании вилки.

Механизм переноса действует только при одном направлении вращения счетных колес и не допускает выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил эту операцию операцией сложения с десятичным дополнением.

Пусть, например, необходимо из 532 вычесть 87. Метод дополнения приводит к действиям:

532 - 87 = 532 - (100-13) = (532 + 13) - 100 = 445.

Нужно только не забыть вычесть 100. Но на машине, имеющей определенное число разрядов, об этом можно не заботиться. Действительно, пусть на 6-разрядной машине выполняется вычитание: 532 - 87. Тогда 000532 + 999913 = 1000445. Но самая левая единица потеряется сама собой, так как переносу из 6-го разряда некуда, деться. В машине Паскаля десятичные дополнения написаны в верхнем ряду цифрового барабана. Для выполнения операции вычитания достаточно передвинуть планку, закрывающую прямоугольные окна, в нижнее положение, сохранив при этом направление вращения установочных колес.

С изобретения Паскаля начинается отсчет времени развития вычислительной техники. В XVII-XVIII вв. один изобретатель за другим предлагают новые варианты конструкций суммирующих устройств и арифмометров, пока, наконец, в XIX в. неуклонно растущий объем вычислительных работ не создал устойчивого спроса на механические счетные устройства и не позволил наладить их серийный выпуск.

Первая действующая модель счетной суммирующей машины была создана в 1642 г. знаменитым французским ученым Блезом Паскалем . Для выполнения арифметических операций Паскаль заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствовало сложение пропорциональных им углов.

Принцип действия счетчиков в машине Паскаля прост. В основе его лежит идея обыкновенной зубчатой пары - двух зубчатых колес, сцепленных между собой. Для каждого разряда имеется колесо (шестеренка) с десятью зубцами. При этом каждый из десяти зубцов представляет одну из цифр от 0 до 9. Такое колесо получило название "десятичное счетное колесо".

С прибавлением в данном разряде каждой единицы счетное колесо поворачивается на один зубец, т. е. на одну десятую оборота. Требуемую цифру можно установить, поворачивая колесо до тех пор, пока зубец, представляющий эту цифру, не встанет против указателя или окошка. Например, три колеса показывают число 285. Мы можем прибавить к этому числу 111, повернув каждое колесо вправо на один зубец. Тогда против окошек встанут соответственно цифры 3, 9, 6, образуя сумму чисел 285 и 111, т. е. 396. Задача теперь в том, как осуществить перенос десятков. Это одна из основных проблем, которую пришлось решать Паскалю. Наличие такого механизма позволило бы вычислителю не тратить внимание на запоминание переноса из младшего разряда в старший.

Машина, в которой сложение выполняется механически, должна сама определять, когда нужно производить перенос. Допустим, что мы ввели в разряд девять единиц. Счетное колесо повернется на 9/10 оборота. Если теперь прибавить еще одну единицу, колесо "накопит" уже десять единиц. Их надо передать в следующий разряд. Это и есть передача десятков. В машине Паскаля ее осуществляет удлиненный зуб. Он сцепляется с колесом десятков и поворачивает его на 1/10 оборота. В окошке счетчика десятков появится единица - один десяток, а в окошке счетчика единиц снова покажется нуль.

Механизм переноса действует только в одном направлении вращения колес и не допускает выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил операцию вычитания операцией сложения с десятичным дополнением. Пусть, например, необходимо из числа 285 вычесть 11. Метод дополнения приводит к действиям: 285-11=285-(100-89)=285+89-100=274. Нужно только не забывать вычесть 100. Но на машине, имеющей определенное число разрядов, об этом можно не заботиться. Вот как будет выполняться эта операция в шестиразрядной машине: 000285+999989=1000274; при этом единица слева выпадает, так как переносу из шестого разряда некуда деться.

Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она производила на современников огромное впечатление, о ней слагались легенды, ей посвящались поэмы. Все чаще с именем Паскаля появлялась характеристика "французский Архимед". До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной.

Труды Паскаля оказали заметное влияние на весь дальнейший ход развития вычислительной техники. Они послужили основой для создания большого количества всевозможных систем суммирующих машин.

| Суммирующая машина Паскаля

Паскалина (суммирующая машина Паскаля) - механическая счётная машина, изобретённая гениальный французским учёным Блезом Паскалем (1623-1662) в 1642 году.

Паскаль стал первым изобретателем механических счётных машин. Блез начал работу над машиной в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Для своего времени Паскалина имела, конечно, довольно футуристический вид: механический «ящичек» с кучей шестерёнок. За десять лет Паскалю удалось собрать более 50 различных вариантов устройства. Складываемые числа вводились в машину при помощи поворотов наборных колёсиков, на каждое из которых были нанесены деления от 0 до 9, т.к. одно колёсико соответствовало одному десятичному разряду числа. Тем самым, чтобы ввести число, колесики прокручивались до соответствующей цифры . При совершении полного оборота, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая рядом расположенное колесо на 1 позицию.

Первые экземпляры машины Паскаля имели пять зубчатых колёс, спустя время их число увеличилось до шести, а ещё чуть позже до восьми, что позволяло работать с многоразрядными числами, вплоть до 9 999 999. Ответ арифметических операций был виден в верхней части металлического корпуса устройства. Вращение колёс было возможно только в одном направлении, тем самым, исключая возможность работать с отрицательными числами. Примечательно, что машина Паскаля умела выполнять как сложение, так и другие операции, однако требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось дополнениями до девятки, которые в качестве помощи считавшему появлялись в окошке, расположенном над выставленным оригинальным значением.

Преимущества автоматических вычислений никак не изменили ситуацию, т.к. использование десятичной машины для финансовых расчётов в рамках действовавшей во Франции до 1799 года денежной системы было занятием не из простых. Расчёты проводились в ливрах, су и денье. В «ливре» насчитывалось 20 «су», в то время как в «су» - 12 «денье». Похожая система была и в Великобритании. В результате использование десятичной системы счисления в недесятичных финансовых расчётах усложняло и без того трудный процесс вычислений.

Несмотря на вызываемый Паскалиной огромный восторг, машина не озолотила своего создателя. Техническая сложность и высокая стоимость машины в сочетании с небольшими даже для тех лет вычислительными способностями служили серьёзным барьером для её широкого распространения. И всё же, Машина Паскаля заслуженно вошла в историю, ведь заложенный в её основу принцип связанных колёс почти на 300 лет стал основой для большинства создаваемых вычислительных машин.

На этой странице приведены важнейшие события истории развития арифмометров. Следует заметить, что упор сделан не на многочисленные экспериментальные модели, не получившие практического распространения, а на конструкции, производившиеся серийно. Примерно V - VI век до н.э. Появление абака (Египет, Вавилон)

Примерно VI век н.э. Появляются китайские счёты.

1846 г. Счислитель Куммера (Российская империя, Польша). Он сходен с машиной Слонимского (1842, Российская Империя), но компактнее. Был широко распространён во всём мире вплоть до 1970-х годов в качестве дешёвого карманного аналога счёт.

1950-е гг. Расцвет вычислительных автоматов и полуавтоматических арифмометров. Именно в это время выпущена большая часть моделей электрических вычислительных машин.

1962 - 1964 гг. Появление первых электронных калькуляторов (1962 - опытная серия ANITA MK VII (Англия), к концу 1964 электронные калькуляторы выпускаются многими развитыми странами, в т.ч. в СССР (ВЕГА КЗСМ)). Начинается жестокая конкурентная борьба между электронными калькуляторами и мощнейшими вычислительными автоматами. Но на производстве маленьких и дешёвых арифмометров (в основном - неавтоматических и с ручным приводом) появление калькуляторов почти не сказалось.

1968 г. Начато производство Contex-55 - вероятно, самой поздней модели арифмометров с высокой степенью автоматизации.

1969 г. Пик производства арифмометров в СССР. Выпущено около 300 тысяч "Феликсов" и ВК-1.

1978 г. Примерно в это время прекращён выпуск арифмометров "Феликс-М". Возможно, это был последний в мире выпускавшийся тип арифмометров.

1988 г. Последняя достоверно известная дата выпуска механической вычислительной машины - кассового аппарата "Ока".

1995-2002 Механические кассовые аппараты (ККМ) "Ока" (модели 4400, 4401, 4600) исключены из государственного реестра РФ. Видимо, исчезла последняя область применения сложных механических вычислительных машин на территории России.

2008 В некоторых магазинах Москвы всё ещё встречаются счёты...

Суммирующая машина Паскаля (Паскалина) - вычислительное устройство , изобретенное французским ученым Блезом Паскалем (1641, по другим данным 1643). В машине Паскаля каждой цифре соответствовало определенное положение разрядного колеса, разделенного на 10 секторов. Сложение в такой машине осуществлялось поворотом колеса на соответствующее число секторов. Идея использовать вращение колеса для выполнения операции сложения (и вычитания) предлагалась и до Паскаля (например, Вильгельмом Шиккардом, 1623), но новшеством в машине Паскаля был автоматический перенос единицы в следующий, высший разряд при полном обороте колеса предыдущего разряда (так же, как при обычном сложении десятичных чисел в старший разряд числа переносят десятки, образовавшиеся в результате сложения единиц, сотни - от сложения десятков). Это давало возможность складывать многозначные числа без вмешательства человека в работу механизма. Этот принцип использовался с середины 17 до 20 века при построении арифмометров (приводимых в действие от руки) и электрических клавишных вычислительных машин (с приводом от электродвигателя).

Блез Паскаль начал создавать суммирующую машину в юности, наблюдая за работой своего отца - сборщика налогов, который был вынужден выполнять долгие и утомительные расчеты. Паскалина представляла собой механическое устройство в виде ящика с многочисленными связанными одна с другой шестеренками. Складываемые числа вводились в машину при помощи поворота наборных колес. На каждое из этих колес, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа, колеса прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колесо переносило на соседний разряд, сдвигая соседнее колесо на одну позицию. Первые варианты «Паскалины» имели пять зубчатых колес - десятичных разрядов, позднее их число увеличилось до шести или восьми. Ответ появлялся в верхней части металлического корпуса. Вращение колес было возможно лишь в одном направлении, исключая возможность оперирования отрицательными числами. Машина Паскаля позволяла выполнять не только сложение, но требовала при этом применения неудобной процедуры повторных сложений.

Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчетов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчеты велись в ливрах (фунтах), су (солидах) и денье (денариях). В ливре насчитывалось 20 су, в су - 12 денье. В таких условиях использование десятичной системы усложняло процесс вычислений.

Примерно за 10 лет Паскаль построил около 50 устройств и сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий ажиотаж, сложность изготовления и высокая стоимость машины служили препятствием ее распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колес стал основой для большинства позднейших вычислительных устройств. Машина Паскаля была вторым реально работающим вычислительным устройством после считающих часов Вильгельма Шиккарда.

2024 zd32.ru. Здоровье. Компьютеры. Хобби. Финансы. Карьера. Образование.