Виды графов. Что такое метод графов? Применение теории графов

Вполне несвязные графы . Граф, у которого множество ребер пусто, называется вполне несвязным (или пустым) графом. Будем обозначать вполне несвязный граф с п вершинами через N n ; N 4 показан на рис. 1. Заметим, что у вполне несвязного графа все вершины изолированы. Вполне несвязные графы не представляют особого интереса.

Полные графы . Простой граф, в котором любые две вершины смежны, называется полным графом. Полный граф с n вершинами обычно обозначается через. Графы и изображены на рис. 2 и 3. имеет ровно n (n - 1)/2 ребер.


Регулярные графы . Граф, у которого все вершины имеют одну и ту же степень, называется регулярным графом. Если степень каждой вершины равна r, то граф называется регулярным степени r. Регулярные графы степени 3, называемые также кубическими (или трехвалентными) графами (см., например, рис. 2 и 4). Другим известным примером кубического графа является так называемый граф Петерсена, показанный на рис. 5. Отметим, что каждый вполне несвязный граф является регулярным степени 0, а каждый полный граф К n - регулярным степени n - 1.

Платоновы графы . Среди регулярных графов особенно интересны так называемые Платоновы графы - графы образованные вершинами и ребрами пяти правильных многогранников - платоновых тел: тетраэдра, куба, октаэдра, додекаэдра и икосаэдра. Граф соответствует тетраэдру (рис. 2); графы, соответствующие кубу и октаэдру, показаны на рис. 5 и 6;

Двудольные графы . Допустим, что множество вершин графа можно разбить на два непересекающихся подмножества V 1 и V 2 так, что каждое ребро в G соединяет какую-нибудь вершину из V 1 с какой-либо вершиной из V 2 (рис. 7);

тогда G называется двудольным графом. Такие графы иногда обозначают G(V 1, V 2), если хотят выделить два указанных подмножества. Двудольный граф можно определить и по-другому - в терминах раскраски его вершин двумя цветами, скажем красным и синим. При этом граф называется двудольным, если каждую его вершину можно окрасить красным или синим цветом так, чтобы любое ребро имело один конец красный, а другой - синий. Следует подчеркнуть, что в двудольном графе совсем не обязательно каждая вершина из V 1 соединена с каждой вершиной из V 2 ; если же это так и если при этом граф G простой, то он называется полным двудольным графом и обычно обозначается где m, n - число вершин соответственно в V 1 и V 2 . Например, на рис. 8 изображен граф K 4 , 3 . Заметим, что граф имеет ровно m + n вершин и mn ребер. Полный двудольный граф вида называется звездным графом; на рис. 9 изображен звездный граф.

Связные графы . Граф связный, если его нельзя представить в виде объединения двух графов, и несвязный в противном случае. Очевидно, что всякий несвязный граф G можно представить в виде объединения конечного числа связных графов - каждый из таких связных графов называется компонентой (связности) графа G. (На рис. 10 изображен граф с тремя компонентами.) Доказательство некоторых утверждений для произвольных графов часто бывает удобно сначала провести для связных графов, а затем применить их к каждой компоненте в отдельности.

Виды графов могут определяться общими принципами их построения (таковы, например, двудольный граф и эйлеров граф), а могут зависеть от тех или иных свойств вершин или рёбер (например, ориентированный и неориентированный граф, обыкновенный граф).

Ориентированные и неориентированные графы

звеньями (порядок двух концов ребра графа не существенен), называются неориентированными .

Графы, в которых все рёбра являются дугами (порядок двух концов ребра графа существенен), называются ориентированными графами или орграфами .

Неориентированный граф может быть представлен в виде ориентированного графа , если каждое его звено заменить на две дуги, имеющие противоположные направления.

Графы с петлями, смешанные графы, пустые графы, мультиграфы, обыкновенные графы, полные графы

Если граф содержит петли , то это обстоятельство специально оговаривают, добавляя к основной харатеристике графа слова "с петлями", например, "орграф с петлями". Если граф не содержит петель, то добавляют слова "без петель".

Смешанным называют граф, в котором имеются рёбра хотя бы двух из упомянутых трёх разновидностей (звенья, дуги, петли).

Граф, состоящий только из голых вершин , называется пустым .

Мультиграфом называется граф, в котором пары вершин могут быть соединены более чем одним ребром, то есть содершащий кратные рёбра , но не содержащий петель.

Граф без дуг (то есть неориентированный), без петель и кратных рёбер называется обыкновенным . Обыкновенный граф изображён на рисунке ниже.

Граф заданного типа называют полным , если он содержит все возможные для этого типа рёбра (при неизменном множестве вершин). Так, в полном обыкновенном графе каждая пара различных вершин соединена ровно одним звеном (рисунок ниже).

Двудольный граф

Граф называется двудольным , если множество его вершин можно разбить на два подмножества так, чтобы никакое ребро не соединяло вершины одного и того же подмножества.

Пример 1. Построить полный двудольный граф.

Полный двудольный граф состоит из двух множеств вершин и из всевозможных звеньев, соединяющих вершины одного множества с вершинами другого множества (рисунок ниже).

Эйлеров граф

Мы уже касались задачи о кёнигсбергских мостах . Отрицательное решение Эйлером этой задачи привело к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данной графе цикл, содержащий все вершины и все рёбра? Граф, в котором это возможно, называется эйлеровым графом.

Итак, эйлеровым графом называется граф, в котором можно обойти все вершины и при этом пройти одно ребро только один раз. В нём каждая вершина должна иметь только чётное число рёбер.

Пример 2. Является ли полный граф с одинаковым числом n рёбер, которым инцидентна каждая вершина, эйлеровым графом? Объяснить ответ. Привести примеры.

Ответ. Если n - нечётное число, то каждая вершина инцидентна n -1 рёбрам. В таком случае данный граф является эйлеровым графом. Примеры таких графов на рисунке ниже.

Регулярный граф

Регулярным графом называется связный граф, все вершины которого имеют одинаковую степень k . Таким образом, на рисунке к примеру 2 изображены примеры регулярных графов, называемых по степени его вершин 4-регулярными и 2-регулярными графами или регулярными графами 4-й степени и 2-й степени.

Число вершин регулярного графа k -й степени не может быть меньше k +1. У регулярного графа нечётной степени может быть лишь чётное число вершин.

Пример 3. Построить регулярный граф, в котором самый короткий цикл имеет длину 4.

Решение. Рассуждаем так: для того, чтобы длина цикла удовлетворяла заданному условию, требуется, чтобы число вершин графа было кратно четырём. Если число вершин равно четырём, то получится граф, изображённый на рисунке ниже. Он является регулярным, но в нём самый короткий цикл имеет длину 3.

Увеличиваем число вершин до восьми (следующее число, кратное четырём). Соединяем вершины рёбрами так, чтобы степени вершин были равны трём. Получаем следующий граф, удовлетворяющий условиям задачи.

Гамильтонов граф

Гамильтоновым графом называется граф, содержащий гамильтонов цикл. Гамильтоновым циклом называется простой цикл, проходящий через все вершины рассматриваемого графа. Таким образом, говоря проще, гамильтонов граф - это такой граф, в котором можно обойти все вершины и каждая вершина при обходе повторяется лишь один раз. Пример гамильтонова графа - на рисунке ниже.

Пример 4. Задан двудольный граф, в котором n - число вершин из множества A , а m - число вершин из множества B . В каком случае граф будет эйлеровым графом, а в каком случае - гамильтоновым графом?

Федеральное Государственное образовательное учреждение высшего профессионального образования

«Мордовский государственный педагогический институт имени М.Е. Евсевьева»

Физико-математический факультет

Реферат

по теме:

«Теория графов »

Выполнила: студентка

группы МДМ-109

Добрынкина О.А.

Проверила: Лапина И.Э.

Саранск 2014

Введение………………………………………………………………………. 3

1. Основные понятия теории графов………………………………………… 4

2. Примеры графов……………………………………………………………. 8

3. Эйлеровы графы…………………………………………………………… 13

4. Примеры приложений теории графов……………………………………. 16

5. Задача о кратчайшем пути………………………………………………… 18

6. Алгоритм нахождения максимального потока………………………….. 27

Заключение…………………………………………………………………… 38

Список литературы…………………………………………………………… 39

Введение

В последнее время наблюдается неуклонное вторжение математических методов в различные отрасли науки и техники. Процесс математизации затронул и экономическую науку.

Понятие графа, само по себе очень простое, оказалось весьма плодотворным в науке и часто употребляемым. Теория графов изучает графы как абстрактные математические образования, независимо от их конкретных истолкований, а полученные общие результаты затем прилагаются к самым различным дисциплинам.

Термин «граф» приобрел право гражданства и вошел в математический язык в 1936 г., после выхода в свет монографии Кёнига, в которой впервые графы изучаются как самостоятельные математические объекты независимо от их содержания.

Изучение графов актуально и на сегодняшний день. Найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут – все это примеры из нашей повседневной жизни. Эти и многие другие задачи могут быть решены при помощи графов.

В данной работе излагается ряд основных понятий, так же приведены примеры приложений теории графов и рассмотрены два подхода к решению экономических задач на основе теории графов.

1. Основные понятия теории графов

Граф – система, которая интуитивно может быть рассмотрена как множество кружков и множество соединяющих их линий (рис. 1).

Кружки называются вершинами графа, линии со стрелками – дугами, без стрелок – ребрами. Граф, в котором направление линий не выделяется (все линии являются ребрами), называется неориентированным (рис. 1, А); граф, в котором направление линий принципиально (линии являются дугами) называется ориентированным (рис. 1, Б).

Опр. 1. Задано конечное множество X , состоящее из n элементов (X = {1, 2,…, n }), называемых вершинами графа, и подмножество V декартова произведения X ×X, то есть
, называемое множеством дуг, тогда ориентированным графом G называется совокупность (X, V).

Опр. 2. Неориентированным графом называется совокупность множества X и множества неупорядоченных пар элементов, каждый из которых принадлежит множеству X.

Дугу между вершинами i и j,
, будем обозначать (i, j). Число дуг графа будем обозначать m (V = (
)).

Опр. 3. Подграфом называется часть графа, образованная подмножеством вершин вместе со всеми ребрами (дугами), соединяющими вершины из этого множества. Если из графа удалить часть ребер (дуг), то получим частичный граф.

Опр. 4. Две вершины называются смежными, если они соединены ребром (дугой). Смежные вершины называются граничными вершинами соответствующего ребра (дуги), а это ребро (дуга) – инцидентным соответствующим вершинам.

Опр.5. Путем называется последовательность дуг (в ориентированном графе), такая, что конец одной дуги является началом другой дуги.

Опр. 5.1. Простой путь – путь, в котором ни одна дуга не встречается дважды.

Опр. 5.2. Элементарный путь – путь, в котором ни одна вершина не встречается дважды.

Опр. 5.3. Контур – путь, у которого конечная вершина совпадает с начальной вершиной.

Опр. 5.4 Длиной пути (контура) называется число дуг пути (или сумма длин его дуг, если последние заданы).

Опр.6. Граф, для которого из (i, j) V следует (j, i) V называется симметрическим.

Опр. 7. Если из (i, j) V следует, что (j, i)
V, то соответствующий граф называется антисимметрическим.

Опр. 8.1. Цепью называется множество ребер (в неориентированном графе), которые можно расположить так, что конец (в этом расположении) одного ребра является началом другого.

Опр. 8.2. Цепь – последовательность смежных вершин.

Опр. 9. Замкнутая цепь называется циклом.

Опр. 10.1. Элементарная цепь (цикл, путь, контур), проходящая через все вершины графа называется гамильтоновой цепью (соответственно – циклом, путем, контуром).

Опр. 10.2. Простая цепь (цикл, путь, контур), содержащая все ребра (дуги) графа называется эйлеровой цепью (соответственно – циклом, путем, контуром).

Опр. 11. Если любые две вершины графа можно соединить цепью, то граф называется связным. Если граф не является связным, то его можно разбить на связные подграфы, называемые компонентами.

Опр. 12. Связностью графа называется минимальное число ребер, после удаления которых граф становится несвязным. Для ориентированных графов, если любые две вершины графа можно соединить путем, то граф называется сильно связным. Связный граф, в котором существует эйлеров цикл, называется эйлеровым графом.

Опр. 13. В неориентированном графе степенью вершины i называется число инцидентных ей ребер. Очевидно,
. Граф, степени всех вершин которого равны n – 1, называется полным. Граф, все степени вершин которого равны, называется однородным.

Опр. 14. Вершина, для которой не существует инцидентных ей ребер (= 0) называется изолированной. Вершина, для которой существует только одно инцидентное ей ребро ( = 1) называется висячей.

Опр. 15. Определим матрицу смежности графа как квадратную матрицу n ×n, элемент которой равен единице, если (i, j) V, и нулю, если (i, j)
V, i, jX. Для неориентированного графа матрица смежности всегда симметрическая.

Опр. 16. Определим матрицу инциденций для ребер графа как прямоугольную матрицу n×m, элемент которой равен единице, если вершина i инцидентна ребру j, и нулю в противном случае, i = 1, n, j = 1, m.

Опр. 17. Матрица инциденций для дуг графа – прямоугольная матрицу m x n, элемент rij которой равен плюс единице, если дуга исходит из вершины i, минус единице, если дуга заходит в вершину i, и нулю в остальных случаях, i = 1, n, j = 1, m

Опр. 18. Деревом называется связный граф без простых циклов, имеющий не менее двух вершин. Для дерева m = n – 1, а число висячих вершин равно
Легко показать, что в дереве любые две вершины связаны единственной цепью.

Опр. 19. Прадеревом называется ориентированное дерево, у которого одна из вершин, называемая корнем, не имеет заходящих дуг, а степени захода остальных вершин равны единице.

Опр. 20. Плоским (планарным) называется граф, который можно изобразить на плоскости так, что различным вершинам соответствуют различные кружки и никакие два ребра не имеют общих точек, отличных от их границ (не пересекаются). Для плоского графа существует понятие грани – части плоскости, ограниченной ребрами и не содержащей внутри себя ни вершин, ни ребер.

Опр. 21. Степенью грани называется число ее граничных ребер (висячие ребра считаются дважды).

Любому связному плоскому графу G можно поставить в соответствие двойственный ему связный плоский граф G*, определяемый следующим образом: каждой грани графа G соответствует вершина графа G*, каждому ребру V графа G, являющемуся граничным для граней z1 и z2, соответствует ребро V* графа G*, соединяющее соответствующие граням z1 и z2 вершины.

2. Примеры графов

Вполне несвязные графы . Граф, у которого множество ребер пусто, называется вполне несвязным (или пустым) графом. Будем обозначать вполне несвязный граф с п вершинами через N n ; N 4 показан на рис. 1. Заметим, что у вполне несвязного графа все вершины изолированы. Вполне несвязные графы не представляют особого интереса.

Полные графы . Простой граф, в котором любые две вершины смежны, называется полным графом. Полный граф с n вершинами обычно обозначается через . Графы и изображены на рис. 2 и 3. имеет ровно n (n – 1)/2 ребер.

Регулярные графы . Граф, у которого все вершины имеют одну и ту же степень, называется регулярным графом. Если степень каждой вершины равна r , то граф называется регулярным степени r . Регулярные графы степени 3, называемые также кубическими (или трехвалентными) графами (см., например, рис. 2 и 4). Другим известным примером кубического графа является так называемый граф Петерсена, показанный на рис. 5. Отметим, что каждый вполне несвязный граф является регулярным степени 0, а каждый полный граф К n – регулярным степени n – 1.

Платоновы графы . Среди регулярных графов особенно интересны так называемые Платоновы графы – графы образованные вершинами и ребрами пяти правильных многогранников – платоновых тел: тетраэдра, куба, октаэдра, додекаэдра и икосаэдра. Граф соответствует тетраэдру (рис. 2); графы, соответствующие кубу и октаэдру, показаны на рис. 5 и 6;

Двудольные графы . Допустим, что множество вершин графа можно разбить на два непересекающихся подмножества V 1 и V 2 так, что каждое ребро в G соединяет какую-нибудь вершину из V 1 с какой-либо вершиной из V 2 (рис. 7);

тогда G называется двудольным графом. Такие графы иногда обозначают G (V 1, V 2), если хотят выделить два указанных подмножества. Двудольный граф можно определить и по-другому – в терминах раскраски его вершин двумя цветами, скажем красным и синим. При этом граф называется двудольным, если каждую его вершину можно окрасить красным или синим цветом так, чтобы любое ребро имело один конец красный, а другой – синий. Следует подчеркнуть, что в двудольном графе совсем не обязательно каждая вершина из V 1 соединена с каждой вершиной из V 2 ; если же это так и если при этом граф G простой, то он называется полным двудольным графом и обычно обозначается

где m , n – число вершин соответственно в V 1 и V 2 . Например, на рис. 8 изображен граф K 4 , 3 . Заметим, что граф
имеет ровно m + n вершин и mn ребер. Полный двудольный граф вида
называется звездным графом; на рис. 9 изображен звездный граф
.

Связные графы . Граф связный, если его нельзя представить в виде объединения двух графов, и несвязный в противном случае. Очевидно, что всякий несвязный граф G можно представить в виде объединения конечного числа связных графов – каждый из таких связных графов называется компонентой (связности) графа G . (На рис. 10 изображен граф с тремя компонентами.) Доказательство некоторых утверждений для произвольных графов часто бывает удобно сначала провести для связных графов, а затем применить их к каждой компоненте в отдельности.

Циклические графы и колеса . Связный регулярный граф степени 2 называется циклическим графом (или циклом); циклический граф. с п вершинами обозначается через С n . Соединение графов и
(п ≥ 3) называется колесом с п вершинами и обозначается W n . На рис. 11 изображены С 6 и W 6 ; граф W 4 уже появлялся на рис. 2.

3. Эйлеровы графы

Связный граф G называется эйлеровым, если существует замкнутая цепь, проходящая через каждое его ребро; такая цепь называется эйлеровой цепью. Отметим, что в этом определении требуется, чтобы каждое ребро проходилось только один раз. Если снять ограничение на замкнутость цепи, то граф называется полуэйлеровым; при этом каждый эйлеров граф будет полуэйлеровым. На рис. 13,14,15 изображены соответственно не эйлеров, полуэилеров и эйлеров графы.

Название «эйлеров» возникло в связи с тем, что Эйлер первым решил знаменитую задачу о кенигсбергских мостах, в которой нужно было узнать, имеет ли граф, изображенный на рис. 15, эйлерову цепь (не имеет). Сразу же возникает вопрос: можно ли найти необходимые и достаточные условия для того, чтобы граф был эйлеровым

Докажем простую лемму.

Лемма 1. Если степень каждой вершины графа G не меньше двух, то G содержит цикл.

Доказательство. Если в графе G имеются петли или кратные ребра, то утверждение очевидно; поэтому предположим, что G является простым графом. Пусть v – произвольная вершина графа G ; построим по индукции маршрут , выбирая вершину v 1 смежной вершине v , а для i ≥1 – выбирая v i +1 смежной v i и отличной от v i -1 (существование такой вершины v i +1 гарантировано условием леммы). Так как G имеет конечное число вершин, то в конце концов мы придем к вершине, которая уже была выбрана раньше. Предположим, что v k – первая такая вершина; тогда часть маршрута, лежащая между двумя вхождениями v h , и является требуемым циклом.

Теорема 1. Связный граф G является эйлеровым тогда и только тогда, когда каждая вершина в G имеет четную степень.

Доказательство.
Предположим, что Р является эйлеровой цепью в графе G . Тогда при всяком прохождении цепи Р через любую из вершин графа степень этой вершины увеличивается на два. А так как каждое ребро встречается в Р ровно один раз, то каждая вершина должна иметь четную степень.

Проведем доказательство индукцией по числу ребер в G . В силу связности G , степень каждой вершины не меньше двух, а отсюда, по предыдущей лемме, заключаем, что граф G содержит цикл С. Если С проходит через каждое ребро графа G , то доказательство завершено; если нет, то, удаляя из G ребра, принадлежащие циклу С, получим новый (быть может, и несвязный) граф Н. Число ребер в Н меньше, чем в G , и любая вершина в Н по-прежнему имеет четную степень. Согласно индуктивному предположению, в каждой компоненте графа Н существует эйлерова цепь. В силу связности графа G , каждая компонента в Н имеет по крайней мере одну общую вершину с циклом С, поэтому искомую эйлерову цепь графа G можно получить так: идем по ребрам цикла С до тех пор, пока не встретим неизолированную вершину графа Н, затем следуем по эйлеровой цепи той компоненты в Н, которая содержит указанную вершину; далее продолжаем путь по ребрам цикла С, пока не встретим вершину, принадлежащую другой компоненте графа Н, и т.д.; заканчивается процесс тогда, когда мы попадаем обратно в начальную вершину (рис. 17).

Следствие 1. Связный граф является эйлеровым тогда и только тогда, когда семейство его ребер можно разбить на непересекающиеся циклы.

Следствие 2. Связный граф является полуэйлеровым тогда и только тогда, когда в нем не более двух вершин имеют нечетные степени.

4. Примеры приложений теории графов

1. «Транспортные» задачи, в которых вершинами графа являются пункты, а ребрами – дороги (автомобильные, железные и др.) и / или другие транспортные (например, авиационные) маршруты. Другой пример – сети снабжения (энергоснабжения, газоснабжения, снабжения товарами и т.д.), в которых вершинами являются пункты производства и потребления, а ребрами – возможные маршруты перемещения (линии электропередач, газопроводы, дороги и т.д.). Соответствующий класс задач оптимизации потоков грузов, размещения пунктов производства и потребления и т.д., иногда называется задачами обеспечения или задачами о размещении. Их подклассом являются задачи о грузоперевозках.

2. «Технологические задачи», в которых вершины отражают производственные элементы (заводы, цеха, станки и т.д.), а дуги потоки сырья, материалов и продукции между ними, заключаются в определении оптимальной загрузки производственных элементов и обеспечивающих эту загрузку потоков.

3. Обменные схемы, являющиеся моделями таких явлений как бартер, взаимозачеты и т.д. Вершины графа при этом описывают участников обменной схемы (цепочки), а дуги – потоки материальных и финансовых ресурсов между ними. Задача заключается в определении цепочки обменов, оптимальной с точки зрения, например, организатора обмена и согласованной с интересами участников цепочки и существующими ограничениями

4. Управление проектами. (Управление проектами – раздел теории управления, изучающий методы и механизмы управления изменениями (проектом называется целенаправленное изменение некоторой системы, осуществляемое в рамках ограничений на время и используемые ресурсы; характерной чертой любого проекта является его уникальность, то есть нерегулярность соответствующих изменений.)). С точки зрения теории графов проект – совокупность операций и зависимостей между ними. Хрестоматийным примером является проект строительства некоторого объекта. Совокупность моделей и методов, использующих язык и результаты теории графов и ориентированных на решение задач управления проектами, получила название календарно-сетевого планирования и управления (КСПУ). В рамках КСПУ решаются задачи определения последовательности выполнения операций и распределения ресурсов между ними, оптимальных с точки зрения тех или иных критериев (времени проекта, затрат, и др.).

5. Модели коллективов и групп, используемые в социологии, основываются на представлении людей или их групп в виде вершин, а отношений между ними (например, отношений знакомства, доверия, симпатии и т.д.) – в виде ребер или дуг. В рамках подобного описания решаются задачи исследования структуры социальных групп, их сравнения, определения агрегированных показателей, отражающих степень напряженности, согласованности, взаимодействия и др.

6. Модели организационных структур, в которых вершинами являются элементы организационной системы, а ребрами или дугами – связи (информационные, управляющие, технологические и др.) между ними.

5. Задача о кратчайшем пути

Пример 1. Задача о волке, козе и капусте. Коза, капуста и волк находятся на берегу реки; перевозчику надо переправить их через реку, но его лодка так мала, что он может взять с собой не более одною из этих трех «пассажиров». По очевидным причинам нельзя оставлять без надзора волка с козой, а козу с капустой. Как должен поступить перевозчик?

Эта широко известная задача легко решается в уме благодаря малому числу вариантов, подлежащих рассмотрению, тем не менее перед нами типичный пример задачи, о нахождении кратчайшего пути: чертится граф изображенный на рис 1 и ищется путь, ведущий из положения а (когда коза К, капуста Кап, волк В и перевозчик П находятся на правом берегу) в положение b (когда все переправлены на левый берег), искомый путь показан на рисунке жирными линиями.

В более общем случае необходим систематический алгоритм, изложим несколько методов.

Задача о кратчайшем пути

Пусть задана сеть из n + 1 вершины, то есть ориентированный граф, в котором выделены две вершины – вход (нулевая вершина) и выход (вершина с номером n). Для каждой дуги заданы числа, называемые длинами дуг. Длиной пути (контура) называется сумма длин входящих в него дуг

(если длины дуг не заданы, то длина пути (контура) определяется как число входящих в него дуг). Задача заключается в поиске кратчайшего пути (пути минимальной длины) от входа до выхода сети.

Для существования кратчайшего пути необходимо и достаточно отсутствия в сети контуров отрицательной длины.

Предположим, что в сети нет контуров. Тогда всегда можно пронумеровать вершины таким образом, что для любой дуги (i, j) имеет место j > i. Такая нумерация называется правильной. Легко показать, что в сети без контуров всегда существует правильная нумерация.

Обозначим – длину дуги (i; j). Кратчайший путь в сети, имеющей правильную нумерацию, определяется следующим алгоритмом.

Алгоритм 1.


;

Шаг k: помечаем вершину k индексом
i

Индекс выхода будет равен длине кратчайшего пути. (Алгоритм 1 для задач динамического программирования отражает принцип оптимальности Беллмана: если ищется кратчайший путь между двумя точками, то длина пути между любыми двумя точками кратчайшего пути также должна быть минимальна.) На рисунке 2 приведен пример применения алгоритма 1 для определения кратчайшего пути (числа у дуг равны длинам дуг, индексы вершин помещены в квадратные скобки, кратчайший путь выделен двойными линиями).

Когда индексы (называемые в некоторых задачах потенциалами вершин) установятся, кратчайший путь определяется методом обратного хода от выхода к входу, то есть кратчайшим является путь
, такой, что
и т.д.

Следующий алгоритм дает возможность определять кратчайший путь в общем случае (то есть при произвольной нумерации вершин).

Алгоритм 2 (алгоритм Форда).

Шаг 0: Помечаем нулевую вершину индексом
, все остальные вершины индексами
, i = 1, n;

Шаг k: Рассматриваем все дуги. Если для дуги (i; j)
>, то вычисляем новое значение
;

Индексы устанавливаются за конечное число шагов. Обозначим
- установившиеся значения индексов, которые обладают следующим свойством: величина равна длине кратчайшего пути из нулевой вершины в вершину i. Кратчайший путь из вершины 0 в вершину i определяется методом обратного хода.

Если длины всех дуг неотрицательны, то для поиска кратчайшего пути применим следующий алгоритм.

Алгоритм 3.

Шаг 0: Помечаем нулевую вершину индексом
;

Шаг k: Пусть уже помечено некоторое множество вершин. Обозначим Q – множество непомеченных вершин, смежных с помеченными. Для каждой вершины
вычисляем величину
где минимум берется по всем помеченным вершинам i, смежным с вершиной k. Помечаем вершину k, для которой величина минимальна, индексом
.

Подобную процедуру повторяем до тех пор, пока не будет помечена вершина n. Длина кратчайшего пути равна , а сам кратчайший путь определяется так, как это было описано выше.

Аналогично задаче о кратчайшем пути формулируется и решается задача о максимальном (длиннейшем) пути – достаточно изменить знаки дуг на противоположные и решить задачу о кратчайшем пути. Для существования решения задачи о максимальном пути необходимо и достаточно отсутствия контуров положительной длины.

В задаче поиска пути максимальной надежности длины дуг интерпретируются, например, как вероятности того, что существует связь между соответствующими двумя пунктами. Заменяя длины дуг их логарифмами, взятыми с обратными знаками, получаем, что путь максимальной надежности в исходном графе будет соответствовать кратчайшему пути в новом графе.

Пример 1.

Рис. 3. Исходные данные к задаче о кратчайшем пути.

Ситуацию можно описать не только ориентированным графом, но и таблицей (табл. 1).

Табл.1. Исходные данные к задаче о кратчайшем пути

Начало дуги

Конец дуги

Время в пути

Спрашивается в задаче: как кратчайшим путем попасть из вершины 1 в вершину 4?

Решение. Введем обозначение: С (Т) – длина кратчайшего пути из вершины 1 в вершину Т. (Поскольку любой путь, который надо рассмотреть, состоит из дуг, а дуг конечное число, и каждая входит не более одного раза, то претендентов на кратчайший путь конечное число, и минимум из конечного числа элементов всегда достигается.) Рассматриваемая задача состоит в вычислении С (4) и указании пути, на котором этот минимум достигается.

Для исходных данных, представленных на рис. 3 и в табл. 1, в вершину 3 входит только одна стрелка, как раз из вершины 1, и около этой стрелки стоит ее длина, равная 1, поэтому С(3)=1. Кроме того, очевидно, что С(1)=0.

В вершину 4 можно попасть либо из вершины 2, пройдя путь, равный 4, либо из вершины 5, пройдя путь, равный 5. Поэтому справедливо соотношение С(4) = min {С(2) + 4; С(5) + 5}.

Таким образом, проведена реструктуризация задачи – нахождение С(4) сведено к нахождению С(2) и С(5).

В вершину 5 можно попасть либо из вершины 3, пройдя путь, равный 2, либо из вершины 6, пройдя путь, равный 3. Поэтому справедливо соотношение С(5) = min {С(3) + 2; С(6) + 3}.

Мы знаем, что С(3) = 1. Поэтому С(5) = min {3; С(6) + 3}.

Поскольку очевидно, что С(6) – положительное число, то из последнего соотношения вытекает, что С(5) = 3.

В вершину 2 можно попасть либо из вершины 1, пройдя путь, равный 7, либо из вершины 3, пройдя путь, равный 5, либо из вершины 5, пройдя путь, равный 2. Поэтому справедливо соотношение С(2) = min {С(1) + 7; С(3) + 5; С(5) + 2}.

Нам известно, что С(1) = 0, С(3) = 1, С(5) = 3. Поэтому С(2) = min {0 + 7; 1 + 5; 3 + 2} = 5.

Теперь мы можем найти С(4): С(4) = min {С(2) + 4; С(5) + 5} = min {5 + 4; 3 + 5} = 8.

Таким образом, длина кратчайшего пути равна 8. Из последнего соотношения ясно, что в вершину 4 надо идти через вершину 5. Возвращаясь к вычислению С(5), видим, что в вершину 5 надо идти через вершину 3. А в вершину 3 можно попасть только из вершины 1. Итак, кратчайший путь таков: 1 → 3 → 5 → 4.

Задача о кратчайшем пути для конкретных исходных данных (рис. 3и табл. 1) полностью решена.

Пример 2.

Найти кратчайший путь (длина пути) из Академгородка (остановка Цветной проезд) до железнодорожного вокзала.

Остановки:

    цветной проезд

    дом быта

3,3"- институт ядерной физики

4 Баня №22

5 Речной вокзал

6 – Сеятель

7 – кафе «Огонек»

8 – Мост

9 – Главный Вокзал

Найти кратчайший путь из вершины 1 в вершины 9.

Исходные данные:

Рис. 4

Табл. 2

Начало дуги

Конец дуги

Длина пути (км.)

3,06

10,9

26,78

21,57

4,26

4,35

2,55

Решение: С (Т) – длина кратчайшего пути из вершины 1 в вершину Т. Нам необходимо найти С(9).

С(1)=0, С(2)=3 (в вершину 2 входит только одна стрелка, ее длина равна 3).

В вершину 9 можно попасть из вершины 5, пройдя путь 4,35, из вершины 6, пройдя путь 25 и из вершины 8, пройдя путь 2,55.

Следовательно, С(9) = min {С(5) + 4,35; С(6) + 25; С(8) + 2,55}

Таким образом необходимо найти С(5), С(6), С(8).

В вершину 5 можно попасть из вершины 1, пройдя путь 26,78, либо из вершины 7, пройдя путь 19

С(5) = min {С(1) + 26,78; С(7) + 19}

Необходимо найти С(7). В вершину 7 можно попасть из вершины 3, пройдя путь 7,6 и из 3" пройдя 7,6.

С(7) = min {С(3) + 7,6; С(3") + 7,6}= min {1,7+7,6; 3,06+7,6}=9,3

С(5) = min {26,78; 9,3+ 19}=26,78

В вершину 6 можно попасть из вершины 2, пройдя путь равный 0,5

С(6)=С(2)+0,5=3+0,5=3,5

В вершину 8 можно попасть из вершины 4, пройдя путь 21,57 и из вершины 5, пройдя путь 4,62.

С(8) = min {С(4) + 21,57; С(5) + 4,26}

С(4)=10,9 (из условия).

С(8) = min {10,09+ 21,57; 26,78 + 4,26}=31,4

Следовательно

С(9)= min {26,78+4,35; 3,5+25; 31,4+2,55}= min {31,13; 28,5; 33,95}=28,5

Таким образом, длина кратчайшего пути равна 28,5 км.

Кратчайший путь: 1 → 2 → 6 → 9.

6. Алгоритм нахождения максимального потока

Идея этого алгоритма состоит в поиске сквозных путей с положительными потоками от источника к стоку.

Рассмотрим ребро (i , j ) с (начальной) пропускной способностью
. В процессе выполнения алгоритма части этих пропускных способностей «забираются» потоками, проходящими через данное ребро, в результате каждое ребро будет иметь остаточную пропускную способность. Запись
- остаточная пропускная способность. Сеть в которой все ребра имеют остаточную пропускную способность, назовем остаточной.

Для произвольного узла j , получающего поток из узла i , определим метку
, где - величина потока, протекающего от j узла к узлу i . Чтобы найти максимальный поток, выполняем следующие действия.

Этап 1.

Для всех ребер положим остаточную пропускную способность равной первоначальной пропускной способности, т.е. приравняем
=
. Назначим
и пометим узел 1 меткой. Полагаем i =1.

Этап 2.

- множество узлов j , в которые можно перейти из узла I по ребру с положительной остаточной пропускной способностью >0 для всех j . Если
, выполняем 3 этап, в противном случае переходим к 4.

Этап 3.

В находим узел k , такой, что
. Положим
и пометим узел k меткой
. Если k =n , сквозной путь найден, и переходим к 5 этапу, в противном случае полагаем i =k и возвращаемся к 2 этапу.

Этап 4.

Откат назад. Если i =1, сквозной путь не возможен, и переходим к 6. Если
, находим помеченный узел r , непосредственно предшествующий узлу i , и удаляем его из множества узлов, смежных с узлом r . Полагаем i =r и возвращаемся ко 2 этапу.

Этап 5.

Определение остаточной сети
. Обозначим через множество узлов, через которые проходит p й найденный сквозной путь от узла источника (узел 1) до узла стока (узел n ).тогда максимальный поток, проходящий по этому пути

Остаточные пропускные способности ребер, составляющих сквозной путь, уменьшаются на величину в направлении движения потока и увеличиваются на эту же величину в противоположном направлении.

Т.о. для ребра (i , j ), входящего в сквозной путь, текущие остаточные пропускные способности изменяются:

1)
, если поток идет от узла i к j ,

2)
, если поток идет от узла j к i .

Этап 6.

Решение.

а) при m найденных сквозных путях максимальный поток выражается

б) Имея значения начальных
и конечных
пропускных способностей ребра (i , j ), можно вычислить оптимальный поток через это ребро следующим образом. Положим . Если >0, поток, проходящий через ребро (i , j ) равен . Если >0, тогда поток равен . (случай, когда одновременно >0 и >0, невозможен).

Пример 1. Найти максимальный поток в сети рис. 1

Итерация 1.
=

1)
и помечаем узел 1 меткой
. i =1

2)

3) k =3, так как . Назначаем
и помечаем узел 3 меткой
. i =3 и возвращаемся к 2)

4)

5) k =5 и . Помечаем узел 5 меткой
. Получаем сквозной путь.

6) сквозной путь определяем по меткам, начиная с узла 5 и заканчивая узлом 1: .
:

Итерация 2.

1)
и помечаем узел 1 меткой
. i =1

2)

3) k =2, и помечаем узел 2 меткой
. i =2 и возвращаемся к 2)

2")

3") k =3 и
. Помечаем узел 3 меткой
. i =3 и возвращаемся к 2)

2»)
(
, поэтому узел 5 не включается в

3») k =4,
и помечаем узел 4 меткой
. i =4 и возвращаемся к 2)

2""")
(так как узлы 1 и 3 помечены, они не включаются в )

3""") k =5 и
. Помечаем узел 5 меткой
. Получен сквозной путь. Переходим к 5)

5)
и . Вычисляем остаточные пропускные способности вдоль пути :

Итерация 3.

1)
и помечаем узел 1 меткой
. i =1

2)

3) k =2,
и помечаем узел 2 меткой
. i =2 и возвращаемся к 2)

2")

Рис. 2. Исходные данные к примеру 2

Исходные данные о транспортной системе, например, внутризаводской, приведенные на рис. 2, можно также задать таблицей (табл. 2).

Табл.2. Исходные данные к задаче о максимальном потоке

Пункт отправления

Пункт назначения

Пропускная способность

Очевидно, максимальная пропускная способность транспортной системы не превышает 6, поскольку не более 6 единиц грузов можно направить из начального пункта 0, а именно, 2 единицы в пункт 1, 3 единицы в пункт 2 и 1 единицу в пункт 3. Далее надо добиться, чтобы все 6 вышедших из пункта 0 единиц груза достигли конечного пункта 4. Очевидно, 2 единицы груза, пришедшие в пункт 1, можно непосредственно направить в пункт 4. Пришедшие в пункт 2 грузы придется разделить: 2 единицы сразу направить в пункт 4, а 1 единицу – в промежуточный пункт 3 (из-за ограниченной пропускной способности участка между пунктами 2 и 4). В пункт 3 доставлены такие грузы: 1 единица из пункта 0 и 1 единица из пункта 3. Их направляем в пункт 4. Итак, максимальная пропускная способность рассматриваемой транспортной системы – 6 единиц груза. При этом не используются внутренние участки (ветки) между пунктами 1 и 2, а также между пунктами 1 и 3. Не догружена ветка между пунктами 1 и 4 – по ней направлены 2 единицы груза при пропускной способности в 3 единицы. Решение можно представить в виде таблицы (табл. 3)

Табл.3. Решение задачи о максимальном потоке

Пункт отправления

Пункт назначения

План перевозок

Пропускная способность

Задача линейного программирования при максимизации потока. Дадим формулировку задачи о максимальном потоке в терминах линейного программирования. Пусть Х KM - объем перевозок из пункта К в пункт М. Согласно рис. 2 К = 0,1,2,3, М = 1,2,3,4, причем перевозки возможны лишь в пункт с большим номером. Значит, всего имеется 9 переменных Х KM, а именно, Х 01, Х 02, Х 03, Х 12, Х 13, Х 14, Х 23, Х 24, Х 34. Задача линейного программирования, нацеленная на максимизацию потока, имеет вид:

F → max,

Х 01 + Х 02 + Х 03 = F (0)

Х 01 + Х 12 + Х 13 + Х 14 = 0 (1)

Х 02 - Х 12 + Х 23 + Х 24 = 0 (2)

Х 03 - Х 13 - Х 23 + Х 34 = 0 (3)

Х 14 - Х 24 - Х 34 = – F (4)

Х 01 ≤ 2

Х 02 ≤ 3

Х 03 ≤ 1

Х 12 ≤ 4

Х 13 ≤ 1

Х 14 ≤ 3

Х 23 ≤ 1

Х 24 ≤ 2

Х 34 ≤ 2

Х КМ ≥ 0, К, М = 0, 1, 2, 3, 4

F ≥ 0.

Здесь F – целевая функция, условие (0) описывает вхождение грузов в транспортную систему. Условия (1) – (3) задают балансовые соотношения для узлов 1- 3 системы. Другими словами, для каждого из внутренних узлов входящий поток грузов равен выходящему потоку, грузы не скапливаются внутри и системы и не «рождаются» в ней. Условие (4) – это условие «выхода» грузов из системы. Вместе с условием (0) оно составляет балансовое соотношение для системы в целом («вход» равен «выходу»). Следующие девять неравенств задают ограничения на пропускную способность отдельных «веток» транспортной системы. Затем указана неотрицательность объемов перевозок и целевой функции. Ясно, что последнее неравенство вытекает из вида целевой функции (соотношения (0) или (4)) и неотрицательности объемов перевозок. Однако последнее неравенство несет некоторую общую информацию – через систему может быть пропущен либо положительный объем грузов, либо нулевой (например, если внутри системы происходит движение по кругу), но не отрицательный (он не имеет экономического смысла, но формальная математическая модель об этом «не знает»).

Заключение

В данной работе мы рассмотрели необходимый минимум понятий, которые позволяют нам продолжить изучение теории графов. Ведь мы затронули лишь вершину огромного айсберга, разобрав пару подходов к решению экономических задач. Теория графов не ограничивается изучением каких-то отдельных явлений или процессов, она находит применение в самых разнообразных областях науки и техники.

Были рассмотрены алгоритмы решения задачи о кратчайшем пути и нахождения максимального потока, разобраны примеры. На их примере была показана значимость теории графов для оптимизации экономических задач.

Так же была составлен и решен пример о кратчайшем пути непосредственно, касающийся нашей повседневной жизни. Задача состояла в отыскании кратчайшего пути (длинны дороги в км.) от Академгородка (остановка Цветной проезд) до Вокзала Главного.

Список литературы

    "Соросовский образовательный журнал" №11 1996 (ст. "Плоские графы");

    «В помощь учителю математики», Йошкар-Ола, 1972 ст. "Изучение элементов теории графов"

    Берж, К.С.Теория графов и ее применение./К. С. Берж.- М.: ИЛ, 2007.-178с.

    Бурков, В.Н. Элементы теории графов./В. Н. Бурков. – М.: Просвещение,2010.-352с.

    Гарднер, М. С"Математические досуги". / М. С. Гарднер.- М. :"Мир",2004.-347с.

    Гарднер, М. С."Математические головоломки и развлечения"./ М С гарднер.-М. :"Мир",2005.-221с.

    Зыков, А. А. Теория конечных графов./ А. А. Зыков.- Новосибирск: "Наука",2006.-257с.

    Касаткин, В. Н. "Необычные задачи математики"./ В. Н. Касаткин.-Киев: "Радяньска школа", 2007.-232с.

    Олехник, С. Н. "Старинные занимательные задачи"./ C .Н. Олехник.- М. "Наука",2008.-431с.

    Оре, О. С."Графы и их применения"./О. С. Оре.- М.:"Мир", 2005-269с.

    Реньи, А. Н."Трилогия о математике"./ А. Н. Реньи.- М.:"Мир",2010-198с.

Что такое метод графов?

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Прежде всего, стоит сказать о том, что графы, о которых пойдет речь, к аристократам былых времен никакого отношения не имеют. Наши «графы» имеют корнем греческое слово «графо», что значит «пишу». Тот же корень в словах «график», «биография».

В математике определение графа дается так: графом называется конечное множество точек, некоторые из которых соединены линиями. Точки называются вершинами графа, а соединяющие линии – рёбрами.

Схема графа, состоящая из «изолированных» вершин, называется нулевым графом. (рис.2)

Графы, в которых не построены все возможные ребра, называются неполными графами. (рис.3)

Графы, в которых построены все возможные ребра, называются полными графами. (рис.4)

Граф, каждая вершина которого соединена с ребром любой другой вершины, называется полным .

Заметим, что если полный граф имеет n вершин, то количество ребер будет равно

n(n-1)/2

Действительно, количество ребер в полном графе с n вершинами определяется как число неупорядоченных пар, составленных из всех n точек-ребер графа, т. е. как число сочетаний из n элементов по 2:


Граф, не являющийся полным, можно дополнить до полного с теми же вершинами, добавив недостающие ребра. Так, например, на рисунке 3 изображен неполный граф с пятью вершинами. На рисунке 4 ребра превращающие граф в полный граф изображены другим цветом, совокупность вершин графа с этими ребрами называется дополнением графа.

Степени вершин и подсчет числа ребер.

Количество рёбер, выходящих из вершины графа, называется степенью вершины . Вершина графа, имеющая нечётную степень, называется нечетной , а чётную степень – чётной .

Если степени всех вершин графа равны, то граф называется однородным . Таким образом, любой полный граф - однородный.

рис.5

На рисунке 5 изображен граф с пятью вершинами. Степень вершины А обозначим Ст.А.


На рисунке: Ст.А = 1, Ст.Б = 2, Ст.В = 3, Ст.Г= 2, Ст.Д= 0.

Сформулируем некоторые закономерности, присущие определенным графам.

Закономерность 1.

Степени вершин полного графа одинаковы, и каждая из них на 1 меньше числа вершин этого графа.

Доказательство:

Эта закономерность очевидна уже после рассмотрения любого полного графа. Каждая вершина соединена ребром с каждой вершиной, кроме самой себя, т. е. из каждой вершины графа, имеющего n вершин, исходит n-1 ребро, что и требовалось доказать.

Закономерность 2.

Сумма степеней вершин графа число четное, равное удвоенному числу ребер графа.

Эта закономерность справедлива не только для полного, но и для любого графа. Доказательство:

Действительно, каждое ребро графа связывает две вершины. Значит, если будем складывать число степеней всех вершин графа, то получим удвоенное число ребер 2R (R - число ребер графа), т. к. каждое ребро было подсчитано дважды, что и требовалось доказать

Число нечетных вершин любого графа четно. Доказательство:

Рассмотрим произвольный граф Г. Пусть в этом графе число вершин, степень которых 1, равна К1; число вершин, степень которых 2, равно K2; ...; число вершин, степень которых n, равно Кn. Тогда сумму степеней вершин этого графа можно записать как
K1 + 2К2 + ЗК3 + ...+ nКn.
С другой стороны: если число ребер графа R, то из закономерности 2 известно, что сумма степеней всех вершин графа равна 2R. Тогда можно записать равенство
K1 + 2К2 + ЗК3 + ... + nКn = 2R. (1)
Выделим в левой части равенства сумму, равную числу нечетных вершин графа (К1 + К3 + ...):
K1 + 2К2 + ЗК3 + 4К4 + 5К5 + ... + nК = 2R,
(К1 + К3 + К5 +...) + (2K2 + 2Х3 +4K4 + 4К5 + ...)=2R
Вторая скобка- четное число как сумма четных чисел. Полученная сумма (2R) четное число. Отсюда (К1 + К3 + К5 +...)-четное число.

Рассмотрим теперь задачи, решаемые с помощью графов:

Задача. Первенство класса . В первенстве класса по настольному теннису 6 участников: Андрей, Борис, Виктор, Галина, Дмитрий и Елена. Первенство проводится по круговой системе – каждый из участников играет с каждым из остальных один раз. К настоящему моменту некоторые игры уже проведены: Андрей сыграл с Борисом, Галиной и Еленой; Борис, как уже говорилось, с Андреем и еще с Галиной; Виктор – с Галиной, Дмитрием и Еленой; Галина с Андреем и Борисом; Дмитрий – с Виктором и Елена – с Андреем и Виктором. Сколько игр проведено к настоящему моменту и сколько еще осталось?

Обсуждение. Изобразим данные задачи в виде схемы. Участников будем изображать точками: Андрея – точкой А, Бориса – точкой Б и т.д. Если двое участников уже сыграли между собой, то будем соединять изображающие их точки отрезками. Получается схема, показанная на рисунке 1.

Точки А, Б, В, Г, Д, Е - вершины графа, соединяющие их отрезки – ребра графа.

Заметим, что точки пересечение ребер графа не являются его вершинами.

Число игр, проведенных к настоящему моменту, равно числу ребер, т.е. 7.

Во избежание путаницы вершины графа часто изображают не точками, а маленькими кружочками.

Чтобы найти число игр, которые надо провести, построим еще один граф с теми же вершинами, но ребрами будем соединять тех участников, которые еще не играли друг с другом (рис.2) Ребер у этого графа оказалось 8, значит, осталось провести 8 игр: Андрей – с Виктором и Дмитрием; Борис – С Виктором, Дмитрием и Еленой и т.д.

Попробуем построить граф для ситуации, описанной в следующей задаче:

Задача. Кто играет Ляпкина – Тяпкина? В школьном драмкружке решили ставить гоголевского «Ревизора». И тут разгорелся жаркий спор. Все началось с Ляпкина – Тяпкина.

Ляпкиным – Тяпкиным буду я! – решительно заявил Гена.

Нет, я буду Ляпкиным – Тяпкиным, возразил Дима.- С раннего детства мечтал воплотить этот образ на сцене.

Ну, хорошо, уступить эту роль, если мне дадут сыграть Хлестакова, - проявил великодушие Гена.

- …А мне – Осипа, - не уступил ему в великодушии Дима.

Хочу быть Земляникой или Городничим,- сказал Вова.

Нет, Городничим буду я, - хором закричали Алик и Боря. – Или Хлестаковым, -

Удастся ли распределить роли так, чтобы исполнители были довольны?

Обсуждение. Изобразим юных актеров кружками верхнего ряда: А – Алик, Б – Борис, В – Вова, Г – Гена, Д – Дима, а роли, которые они собираются играть, - кружками второго ряда (1 – Ляпкин – Тяпкин, 2 – Хлестаков, 3 – Осип, 4 – Земляника, 5 – Городничий). Затем от каждого участника проведем отрезки, т.е. ребра, к ролям, которые он хотел бы сыграть. У нас получиться граф с десятью вершинами и десятью ребрами (рис.3)

Чтобы решить задачу, нужно из десяти выбрать пять ребер, не имеющих общих вершин. Сделать это легко. Достаточно заметить, что в вершины 3 и 4 ведут по одному ребру, из вершин Д и В соответственно. Это означает, что Осипа (вершина 3) должен играть Дима (кто же еще?), а Земляничку – Вова. Вершина1 – Ляпкин – Тяпкин – соединена ребрами с Г и Д. Ребро 1 – Д отдает, так как Дима уже занят, остается 1 – Г, Ляпкина – Тяпкина должен играть Гена. Остается соединить вершины А и Б с вершинами 2 и 5, соответствующими ролям Хлестакова и Городничего. Это можно сделать двумя способами: либо выбрать ребро А -5 и Б – 2, либо ребро А -2 и Б -5. В первом случае Алик будет играть Городничего, а Боря – Хлестакова, во втором случае наоборот. Как показывает граф, других решений задача не имеет.

Тот же граф получится при решении следующей задачи:

Задача. Сварливые соседи. Жители пяти домов поссорились друг с другом и, чтобы не встречаться у колодцев, решили поделить их (колодцы) так, чтобы хозяин каждого дома ходил к «своему» колодцу по «своей» тропинке. Удастся ли им это сделать?

Возникает вопрос: так ли нужны были графы в разобранных задачах? Разве нельзя прийти к решению чисто логическим путем? Да, можно. Но графы придали условиям наглядность, упростили решение и выявили сходство задач, превратив две задачи в одну, а это уже не так уж мало. А теперь представьте себе задачи, графы которых имеют 100 или более вершин. А ведь именно такие задачи приходиться решать современным инженерам и экономистам. Тут без графов не обойтись.

III. Графы Эйлера.

Теория графов – наука сравнительно молодая: во времена Ньютона такой науки еще не существовало, хотя и были в ходу «генеалогические деревья», представ-ляющие собой разновидности графов. Первая работа по теории графов принадлежит Леонарду Эйлеру, и появилась она в 1736 году в публикациях петербургской Академии наук. Начиналась эта работа с рассмотрения следующей задачи:

а)Задача о кенигсбергских мостах. Город Кенигсберг (ныне Калининград) расположен на берегах и двух островах реки Прегель (Преголи).Различные части города были соединены семью мостами, как показано на рисунке. В воскресные дни горожане совершают прогулки по городу. Можно ли выбрать такой маршрут, чтобы пройти один и только один раз по каждому мосту и потом вернуться в начальную точку пути?
Прежде чем рассмотреть решение данной задачи, мы введем понятие «Эйлеровы графы.

Попробуем граф, изображенную на рис.4, обвести одним росчерком , то есть, не отрывая карандаша от листа бумаги и не проходя по одной и той же части линии более одного раза.

Фигура эта, такая простая на вид, оказывается, имеет интересную особенность. Если мы начнем движение из вершины В, то у нас это обязательно получится. А что будет, если мы начнем движение из вершины А? Легко убедиться, что обвести линию в этом случае нам не удается: у нас всегда будет оставаться не пройденные ребра, добраться до которых уже невозможно.

На рис. 5 изображен граф, который вы, наверное, умеете рисовать одним росчерком. Это звезда. Оказывается, хотя она и выглядит значительно более сложной, чем предыдущий граф, обвести ее можно, начав с любой вершины.

Графы, начерченные на рис.6 также можно начертить одним росчерком пера.

Теперь попробуйте вычертить одним росчерком граф, изображенный на рис.7

Вам это сделать не удалось! Почему? Вы не можете найти нужную вершину? Нет! Дело не в этом. Этот граф вообще нельзя вычертить одним росчерком пера.

Проведем рассуждения, которые убедят нас в этом. Рассмотрим узел А. Из него выходят три вершины. Начнем вычерчивать граф с этой вершины. Чтобы пройти по каждому из этих ребер, мы должны выйти из вершины А по одному из них, в какой – то момент обязательно вернуться в него по второму и выйти по третьему. А вот снова войти уже не сможем! Значит, если мы начнем вычерчивание с вершины А, то закончить в нем не сможем.

Допустим теперь, что вершина А не является началом. Тогда в процессе вычерчивания мы должны войти в него по одному из ребер, выйти по другому и снова вернуться по третьему. А так как выйти из него мы не сможем, то вершина А в этом случае должен являться концом.

Итак, вершина А должен быть или началом, или конечным узлом вычерчивания.

Но про три другие вершины нашего графа можно сказать то же самое. Но ведь и начальной вершиной вычерчивания может быть только одна вершина, и конечной вершиной также может быть только одна вершина! А значит, вычерчивать этот граф одним росчерком невозможно.

Граф, который можно нарисовать, не отрывая карандаша от бумаги, называется эйлеровым (рис.6).

Такими графы названы в честь учёного Леонарда Эйлера.

Закономерность1. (вытекает из рассмотренной нами теоремы).


Невозможно начертить граф с нечетным числом нечетных вершин.
Закономерность 2.

Если все вершины графа четные, то можно не отрывая карандаш от бумаги («одним росчерком»), проводя по каждому ребру только один раз, начертить этот граф. Движение можно начать с любой вершины и закончить его в той же вершине.
Закономерность 3.

Граф, имеющий всего две нечетные вершины, можно начертить, не отрывая карандаш от бумаги, при этом движение нужно начать с одной из этих нечетных вершин и закончить во второй из них.
Закономерность 4.

Граф, имеющий более двух нечетных вершин, невозможно начертить «одним росчерком».
Фигура (граф), которую можно начертить, не отрывая карандаш от бумаги, называется уникурсальной.

Граф называется связным, если любые две его вершины могут быть соединены путем, т. е. последовательностью ребер, каждое следующее из которых начинается в конце предыдущего.

Граф называется несвязным , если это условие не выполняется.

рис.7рис.8

На рисунке 7, очевидно, изображен несвязный граф. Если, например, на рисунке между вершинами Д и Е провести ребро, то граф станет связным. (рис.8)


Такое ребро в теории графов (после удаления которого граф из связного превращается в несвязный) называется мостом .

Примерами мостов на рисунке 7 могли бы служить ребра ДЕ, A3, ВЖ и др., каждое из которых соединяло бы вершины «изолированных» частей графа.(рис.8)


Несвязный граф состоит из нескольких «кусков». Эти «куски» называются компонентами связности графа. Каждая компонента связности является, конечно, связным графом. Отметим, что связный граф имеет одну компоненту связности.
ТЕОРЕМА.

Граф является эйлеровым тогда и только тогда, когда он связан и имеет не более двух нечетных вершин.

Доказательство:

Рисуя граф каждую вершину, за исключением начальной и конечной, мы войдём столько же раз, сколько выйдем из неё. Поэтому степени всех вершин должны быть чётными, кроме двух, а значит, эйлеров граф имеет не более двух нечётных вершин.

Вернемся теперь к задаче о кенигсбергских мостах.

Обсуждение задачи . Обозначим различные части города буквами А, В, С, Д, а мосты – буквами а, b, c, d, e, f, g – мосты, соединяющие соответствующие части города. В этой задаче существуют лишь переходы через мосты: переходя через любой мост, мы всегда из одной части города попадаем в другую, И, наоборот, переходя из одной части города в другую, мы непременно пройдем по мосту. Поэтому, изобразим план города в виде графа, вершины которого А, В, С, Д (рис.8) изображают отдельные части города, а ребра a, b, c, d, e, f, g – мосты, соединяющие соответствующие части города. Ребра зачастую оказываются удобнее изображать удобнее не прямолинейными отрезками, а криволинейными – «дугами».

Если бы существовал маршрут, удовлетворяющий условию задачи, то существовал бы замкнутый непрерывный обход этого графа, проходящий один раз по каждому ребру. Иными словами этот граф должен вычерчиваться одним росчерком. Но это невозможно – какую бы вершину мы ни выбрали за исходную, нам придется проходить через остальные вершины, и при этом каждому «входящему» ребру (мосту, по которому мы вошли в эту часть города) будет соответствовать «выходящее» ребро мост, которым мы и воспользуемся затем, чтобы покинуть эту часть города): число ребер, входящих в каждую вершину, будет равно числу ребер, выходящих из нее, т. е. общее число ребер, сходящихся в каждой вершине, должен быть четным. Наш граф этому условию не удовлетворяет, и поэтому требуемого маршрута не существует.

«Ещё один увлекательный способ решения задач» (метод графов) Автор: Пыркова Мария, обучающаяся 7 класса школы-интерната № 9 ОАО РЖД г. Кинель Самарской области Руководитель: Степанова Ольга Алексеевна, учитель математики высшей категории. г. Кинель, 2015

Актуальность решающая роль задач в обучении математике; введение в школьный курс разделов «Комбинаторика», «Логика», «Вероятность»; отыскание способов решения нестандартных задач.

Цель исследования: изучить понятие «графа» и его элементов; применять при решении различных типов задач.

Объект исследования: граф ПРЕДМЕТ ИССЛЕДОВАНИЯ история математики, виды задач, способы решения задач.

Основные методы исследования: исследовательский; использование на практике. компьютерная обработка данных; классификация и анализ собранного материала; математический отбор.

Математическое понятие «граф». В математике графом называется конечное множество точек, некоторые из которых соединены линиями. Точки называются вершинами графа, а соединяющие линии – рёбрами. нулевой граф неполный граф. полный граф.

Сфера применения графов

Практическая часть

Алгоритм составления графа Обсудить о каком процессе идет речь? Какие величины характеризуют данный процесс? Каким соотношением связаны эти величины? Сколько процессов описывается в задаче? Есть ли связь между элементами? Если ответы на эти вопросы записывать схематически, то эта схема и будет сетевым графом.

«Сколько у тебя в стаде голов скота?» Н а вопрос путника: - пастух ответил: «Если бы к моему стаду добавить одну корову, то третью часть всего стада составляли бы овцы и козы. Если бы к имеющимся овцам и козам добавить одну овцу, то седьмую часть их составляли бы козы, в которых третья часть есть лишь один маленький козленок». Сколько голов скота было в стаде? Решение: Составим граф по условию задачи. Решаем обратно. Ответ: в стаде 59 голов скота.

Задачи на движение. Машина прошла первый участок пути за 3 часа, а второй участок - за 2 часа. Длина обоих участков вместе 267 км. С какой скоростью шла машина на каждом участке, если скорость на втором участке была на 8,5 км/ч больше, чем на первом? Построим сетевой граф. Пусть V 1 = х км/ч, тогда V 2 = х+ 8,5 км/ч, S 1 = 3х км, S 2 = 2(х+8.5)км Составим уравнение: 3х + 2(х+8,5) = 267 Ответ: 50 км/ч

Комбинаторные задачи. Задача «Что выше?» На пришкольном участке растут 8 деревьев: яблоня, тополь, береза, рябина, дуб, клен, лиственница и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. Расположите деревья от самого низкого к самому высокому. Ответ: клен самое низкое дерево.

Опрос одноклассников

Заключение «Рано или поздно всякая правильная математическая идея находит применение в том или ином деле.» (А.Н. Крылов) Графы – это замечательные математические объекты, с помощью которых можно решать математические, экономические и логические задачи. Графы позволяют наглядно представить условие задачи, держать в памяти многочисленные факты, а значить, значительно упростить её решение. Вызывает интерес к изучению математики и получению хороших результатов.

Список литературы Энциклопедический словарь юного математика. \Сост. А.П.Савин.- М.: Педагогика, 1989 Квант №6 1994г. М. Гарднер «Математические досуги» М.: Мир, 1972 Берж К. Теория графов и ее применение. ИЛ, 1962. Математика, учебник для 5 кл. / Н.Я.Виленкин, В.И.Жохов и др.-М:Просвещение, 2011 Математика, учебник для 6 кл. / Н.Я.Виленкин, В.И.Жохов и др.-М:Просвещение, 2011 Алгебра: учебник для 7 кл. / Ю.Н.Макарычев и др., под редакцией С.А.Теляковского.-М.:Просвещение,2011 Элективные курсы «Решение задач с помощью графов»/ авт.-сост.Л.Н.Харламова. - Волгоград: Учитель,2007 .

Спасибо за внимание!

2024 zd32.ru. Здоровье. Компьютеры. Хобби. Финансы. Карьера. Образование.